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SUMMARY

The load-bearing body weight of wing-body and all-body hypersonic aircraft is estimated for a

wide variety of structural materials and geometries. Variations of weight with key design and configura-
tion parameters are presented and discussed. Both hot and cool structure approaches are considered in

isotropic, organic composite, and metal matrix composite materials; structural shells are sandwich or skin-

stringer. Conformal and pillow-tank designs are investigated for the all-body shape. The results identify

the most promising hypersonic aircraft body-structure-design approaches and their weight trends. Geo-

metric def'mition of vehicle shapes and structural analysis methods are presented in appendices.

INTRODUCTION

A methodology for estimating body weight of hypersonic aircraft for use in the Ames hypersonic

aircraft synthesis code (refs. 1-4) has been developed and incorporated into the code. This weight routine

is also suitable for stand-alone use to evaluate body weight, and it is the use of this program in a study of
hypersonic vehicle body weight that we report here. The purpose of the study is to provide comparative

information regarding the key configurational, structural, and material issues of hypersonic aircraft.

One of the most important considerations is configuration selection. For hypersonic aircraft, an

all-body configuration, which has no structure that is designed solely to produce lift, appears to be a

possibility (fig. 1). From a weight standpoint, the all-body shape has both inherent advantages and

disadvantages when compared with the conventional wing-body shape (fig. 2). Among the advantages are

the elimination of the wing and smaller overall dimensions. Principal disadvantages are greater body
surface area and noncircular structural sections. Characteristics of the two nominal configurations used in

the present study are listed in tables 1 and 2; any input quantity can be varied parametrically. Complete

geometric definitions of the two shapes may be found in appendix A.

Basic questions arise concerning the arrangement of the body structure of hypersonic aircraft. For

example, the structure may either be exposed to the atmosphere ("hot" structure) or protected from atmo-

spheric heating by an insulation system ("cool" structure). The fuel tank may either be separate from the
body (nonintegral tankage) or combined with the body structure as one unit (integral tankage). The issues

of wing-body versus all-body, hot structure versus cool structure, and nonintegral versus integral tankage,

as well as selection of structural concepts and materials, are all inter-related and have a major impact on
hypersonic aircraft performance.

In this paper, Part I of the body-weight study, we address some of these issues by analyzing the

load-bearing body structure of four basic concepts. The cool cylindrical concept employs the wing-body

configuration (circular cross-sections), with the body-shell structure in the shape of the vehicle mouldline

and held to a temperature of 100°F. The hot cylindrical concept is the same except that the temperature of
the structure is 1500°F. The cool pillow concept uses the all-body configuration (elliptical cross-sections);

intersecting conical tanks are fitted within the vehicle mouldline and walls are used to connect the tank



nodesvertically (fig. 3). TI_ structural temperature is held to 100°F. In the hot conformal concept, the

structure is placed on the mouldiine of the all-body vehicle and vertical tension ties connect top and bottom

surfaces (fig. 3); the structural temperature is 1500°F. All concepts employ integral tankage, that is, the
same structure is used to carry all bending, longitudinal, and pressure loads.

The weights of these four concepts are comlmted for a wide variety of structural geometries and

materials, and comparisons are made. Parametric studies are made of the lightest weight combinations;

among the parameters varied are design pressure, minimum gage, gross take-off weight, and structural

material texture. Analysis of these results identifies the most promising concepts as well as the most
important factors influencing body smactmal weight.

Because our purpose in Part I of the study is to investigate a large number of options and parame-

ters paran_trienily, simplifying assumptions have been made. For example, it has been assumed that

structural concept, temperature, and materials are constant over the entire vehicle. Another restriction, just

mentioned, is that only integral tankage is considered. Finally, thermal protection systems, including the
heat shield required for cool structure concepts, and fuel boil-off penalties have not been included.

In Part II of the study, the most promising concepts identified in Part I will be subjected to a more

thorough and complete analysis. Structural concepts and materials will be varied over the length of the
vehicles depending on local temperature and load conditions and on local section geometry. The issue of

integral vs. nonintegrat tanks will be addressed. Thermal protection system weights and fuel boil-off

penalties will be assessed and added to body weights. The result will be comprehensive, consistent, inte-

grated weight estimates of hypersonic aircraft body structure for use in preliminary design decisions.

METHODS OF ANALYSIS

The vehicle configurations considered in this study are shown in figures 1 and 2; their nominal

ch_eristics are listed in tables 1 and 2 and their geometrical definitions me given in appendix A. The

body of the wing-body configtwation consists of two power-law bodies of circular cross-section placed

back-to-back. This configuration has a delta wing with aft-mounted elevons. The all-body is a wingless
delta-planform body with elliptical cross-sections. The forebody has constant eccentricity and the after

body fairs to a straight-line trailing edge. It has both canards and horizontal tails. These two shapes are

representative of hypersonic configurations presently under consideration and are easily described
mathematically.

The weight items considered in this study are listed in table 3. The shell can be composed of either

a single skin with stiffeners (SSF) or a sandwich with double skins separated by a core (SAND) (fig. 4).

The SSF arrangement always uses longitudinal ring-frames but the SAND concept is considered both with

and without frames. Only the all-body shape uses walls and tension ties, the former with the cool pillow

concept and the latter with the hot conformal concept (fig. 3). Also needed only for the nil-body configu-

ration is a spanwise beam at the vehicle trailing edge to introduce tail loads into the body structure. The
nonoptimum weight accounts for "noncalculable" weight items such as fasteners, welds, cutout reinforce-

ment, surface attachments, uniform gage requirements, and manufacturing constraints, and is a percentage
of the previous five weight items.

The tank item is an estimate of the weight of bulkheads and other items necessary to convert the

body structure into an integral fuel tank. Finally, because of the extreme sensitivity to volume of liquid
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hydrogenfueledhypersonicvehicles,it is necessaryto penalizethebodyweightin proportionto volume
takenupbythestructureto accuratelymeasurestructuralefficiency. Volumelostto structureincludesthe
volumeof thecoreof sandwichshellstructuresandthevolumebetweentheconicaltanksandtheelliptical
shellof thecoolpillow concept,assumedto benonusable.

Preliminaryweightestimatesof aircrafttraditionallyhavebeenmade using empirical methods

based on the actual weights of existing aircraft. The fuselage designs of hypersonic aircraft, however, will

be significantly different from those of existing aircraft. Among these differences are the requirement for

containment of cryogenic fuel within the body, the high external temperatures and resulting thermal gradi-

ents, the presence of insulation systems, the possible use of noncircular structural shells, and the presence
of high-pressure and longitudinal acceleration loads. These factors mean that an empirically based method

of body weight estimation will not be valid.

On the other hand, finite-element methods of structural analysis, commonly used in aircraft detailed

design, are not appropriate for conceptual and preliminary design, because of the large number of specific

cases that need to be considered. One approach is to conduct detailed analyses at just a few locations on

the vehicle and then extrapolate the results to the total design, but this can be misleading because of the

great variety of structural, load, and geometric characteristics in a typical design.

The body structural weight estimation method in the Ames hypersonic synthesis code is based on a

third approach, beam theory structural analysis. This results in a weight estimate that is directly driven by

material properties, load conditions, and vehicle size and shape, and is not confined to an existing data
base. Since the analysis is done station-by-station along the vehicle longitudinal axis, the distribution of

loads and vehicle geometry is accounted for, giving an integrated weight that accounts for local conditions.

Early development of the body structural weight methodology is reported in reference 5. The details of the

methods currently used are found in appendices B and C. Recent use of the weights program is reported
in references 6 and 7.

The analysis starts with a calculation of vehicle loads; three types of loads are considered--longi-
tudinal acceleration, tank pressure, and bending moment. In the present study, all of these loads were

assumed to occur simultaneously at maximum gross weight, although other options are available.

For longitudinal acceleration, longitudinal stress resultants caused by acceleration (nominally

2.0 g) are computed as a function of longitudinal vehicle station; these stress resultants are compressive

in the vehicle forebody (ahead of the propulsion system) and tensile in the afterbody. For pressure loads,

the longitudinal distribution of longitudinal and circumferential (hoop) stress resultants are computed for a
given shell gage pressure (nominally 15 psig). There is an option to either use the pressure loads to reduce

the compressive loads from other sources or not to do this; in either case, the pressure loads are added to
the other tensile loads.

Bending moments are determined by methods described in reference 8. Longitudinal bending-

moment distribution from a quasi-static pull-up maneuver (nominally 2.5 g with a safety factor of 1.5) are

computed. Also available, but not used in this study, is the calculation of bending moments caused by

landing and gust loads. For the wing-body, all pitch control comes from the elevons, while the all-body is
trimmed for level fight with the canards and then uses the horizontal tails for maneuvering.

The bending moment distribution for the two nominal configurations are shown in figure 5. It is
seen that the maximum value of M for the two configurations is about the same at 3x10 6 ft-lb. These dis-

tributions are very sensitive to configuration parameters. For example, use of a wing with lower sweep



(reducesroot chord) and a horizontal tail instead of elevons (increases control load lever arm) both result in

greatly increased bending loads on the wing-body vehicle.

After the net stress resultants are determined at each body station, a search is conducted at each

station to determine the minimum amount of structural material required to preclude failure in the most

critical condition at the most critical point on the shell circumference. Failure modes considered are tensile

yield, compressive yield, local buckling, and gross buckling, which are all subjected to minimum gage
restrictions. This material is then distributed uniformly around the circumference. The portion of the

material at the sides of the body not required for resisting bending, acceleration, and pressure loads is
assumed sufficient for resisting shear and torsion loads.

The maximum stress failure theory is used for predicting yield failures. Buckling calculations

assume stiffened shells behave as wide columns and sandwich shells behave as cylinders. The frames

required for the stiffened shells are sized by the Shanley criterion. This criterion is based on the premise
that, to a first-order approximation, the frames act as elastic supports for the wide column.

The structural geometries considered in the study are listed in table 4. There are three concepts

with Z-stiffened shells and longitudinal frames; one with structural material proportioned to give minimum

weight in buckling (number 2), one with buckling efficiency compromised to give lighter weight in mini-

mum gage (3), and one a buckling--pressure compromise (4). Similarly, there are three truss-core sand-

wich designs, two for minimal weight in buckling with (5) and without (6) frames, and one a buckling-

minimum gage compromise (7).

The structural materials considered are shown in table 5. Included are materials ranging from those

in current operational use to those that have been produced only in research laboratories. There are four

isotropic metallic materials and three composites, two of the latter with metal matrices.

It is assumed that structural materials exhibit elastoplastic behavior. The value of material proper-

ties used are 70% of published minimum values at temperature to account for such unmodeled effects as

fatigue, stress-corrosion, creep, thermal cycling, and thermal stresses.

Composite materials are assumed to consist of orthotropic lamina formed into quasi-isotropic (two-

dimensionally isotropic) laminates. Each of the lamina is composed of filaments placed unidirectionally in
a matrix material. Such a laminate gives very nearly minimum weight for typical aircraft structures. Pub-

lished properties of such lamina are used if available. If not, they are computed assuming that the quasi-

isotropic laminate is in a state of plane stress and that the laminate consists of an infinitely large number of
unidirectional bundles of fibers at equally spaced directions. Composite material density, modulus, and
yield strength are then obtained from the rule of mixtures.

RESULTS

Preliminary Screening

We begin our study by computing the body weight of the four basic concepts (cool cylindrical, hot
cylindrical, cool pillow, and hot conformal) using the structural geometries of table 4 and the materials of

table 5. The results are shown in tables 6-9. These results show that, generally, the wing-body vehicles

have lighter body structure than all-body vehicles (the wing weight, however, must be added to the wing-



bodyvehiclesto getafair comparison).Also,asexpected,advancedmaterialsgive lighterweightsthan
doexistingmaterialsandcool structuresarelighter thanhot;of course,coolstructureconceptswill require
morethermalprotectionsystemweightthanhotones.Thecircledvaluesshowthelightestweightstruc-
turalgeometriesfor eachstructuralmaterial.

Consideringthecoolcylindricalconceptf'trst(table6), all materialsexceptonearelighter in skin-
stringer-frameconstruction.Theexceptionis 6AL4V Titaniumwhich is lighterin sandwich,becauseof
its relativelylow modulus. State-of-the-artmaterials(2014T6Aluminum)give weightfractionsdownto
about0.051while advancedmaterials(AMMC) give weightfractionsdownto approximately0.027,about
half thatvalue. For thehotcylindricalconcept(table7), only four of thesevenmaterialsareavailable
becauseof thestructuraltemperature(1500°F).Theestablishedmaterial,Rene41,givesaprohibitively
highweight,while theadvancedmaterialshaveweightfractionsin the0.043-0.047range.All materials
arelightestin SSFconstruction.

Thecoolpillow concept(table8) tendsto belightestin sandwichstructure,becauseof the
decreasedrigidity of theflattenedbodycross-sectionscomparedwith thewing-body. Theexceptionsare
themetalmatrixcomposites,RSTCandAMMC, whicharelighter in sEn-stringer-frame.Existingmate-
rialsgive weightfractionsdownto about0.086(6AL4V) andadvancedmaterialsto 0.062(AMMC).
Finally, table9 showstheweightsfor thehotconformalcases.Only themetalmatrixcompositesin SSF
constructionarecompetitivefor thisconcept.

Fortheparametricresultsto bediscussednext,only configuration/structuralgeometry/structural
materialcombinationswith structuralweightfractionsbelow0.08will beconsidered.Forthepurposeof
thisselectionawing weight fractionof 0.02,typicalfor thetypeof vehiclebeingconsidered,is addedto
theweight fractionsof all wing-bodyconcepts.This0.02wing-weightfractionis includedin all the
parametricstudiesthatfollow. Theconceptsmeetingthecriterionarecomparedin figure6. Mostof these
arein thecoolcylindricalcategory.All SSFdesignsarenumber3 in table4, theZ-stiffenedshellwith
frames,sizedfor buckling-minimumgagecompromise,andall SANDdesignsarenumber7, theframe-
lesstruss-coresandwich,sizedfor thesamecompromise.

ParametricStudies

Consideringfirst theeffectsof variationin gagepressure(thatis, pressuredifferentialacrossthe
structuralshell),figure 7 showsthat,generally,theratioof bodystructuralweight,W, to grosstake-off
weight,WTO,of theSANDdesignsis moreinfluencedby pressurethanthatof theSSFdesigns(because
alower fractionof materialis availablefor resistinghoopstressesin sandwichconstruction).Also, the
threeconceptswith circularstructuralsectionsarelesssensitiveto pressurethanis thehotconformalcon-
cept(reflectingtherelativeinefficiencyof non-circularpressurevessels).Thetick markson thefigure
denotethenominaldesignpressureof 15psi. Thedashedline at0.02denotesthewing weightportionof
theweight fraction.

It is seenthatthesensitivitytopressurevariesgreatlybetweenconcepts.Forexample,thecool
cylindricalGRAEPO/SSFcombinationis not influencedby pressureuntil about25psi (fig. 7a)while the
hotconformalAMMC/SAND is almostcompletelypressurecritical atthenominalvalueof 15psi. All
resultson figure7 arefor nopressurestabilization.Selectedcalculationsshowthattheseresultsarelittle
changedif pressurestabilizationisemployed.
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Figure8 shows the effect on body weight of changes in minimum gage. The nominal values of

minimum gage are 0.01 in. for isotropic materials (6AL4V, RST), 0.02 in. for metal matrix composites

(RSTC, AMMC) and 0.03 in. for organic composites (GRAEPO). The sensitivity to minimum gage also

varies greatly with concept. Some concepts, for example the hot cylindrical RSTC/SAND (fig. 8b) and
many of the cool pillow combinations (fig. 8c), have completely minimum gage structure at the nominal

values of minimum gage. The SAND designs are more affected by changes in minimum gage than are the
SSF because shell structures with two face sheets contain more material than those with one at the same

gage thickness.

The sensitivities to a basic configuration parameter, gross take-off weight, are shown in figure 9.

These curves all have the same basic shape. At very low values of WTO, loads are low, structure tends to

be sized by minimum gage, and as a consequence W/WTo is high. As WTO increases, W/WTo
decreases as the minimum gage constraint influences less and less of the structure. As WTO further

increases, W/WTo eventually increases in conformance with the usual trend of aircraft structural weight.
The result is that body structural weight fraction is minimum at some value of gross weight for each con-

cept. The location of the minimum W/WTo point, and hence the specific shape of the sensitivity curves,
is highly dependent on structural material, structural geometry, and vehicle configuration.

The minimum body structural weight fraction point varies from around 200,000 lb gross take-off

weight for the hot conformal concepts (fig. 9d) to apparently well beyond 1,000,000 lb for the cylindrical

concepts (figs. 9a and b). At the higher gross weights, the wing-body configuration tends to have a sig-
nificant body weight advantage over the all-body. Also, in many cases sandwich structure tends to

become more competitive relative to skin-stringer-frame as WTO increases.

There are two reasons the body weight fraction of the all-body configurations climbs faster with

gross weight than does the body weight fraction of the wing-body. First, the all-body shape is structurally
less efficient than the circular cross-section of the wing-body, meaning that the all-body structure becomes

strength and stiffness critical at a lower gross weight. Second, the weight of the spanwise beam at the rear
of the all-body grows at a faster rate than does the gross weight.

Figure 10 shows the sensitivity to the temperature of the load-bearing structural material. Only one
set of curves is presented for the cylindrical concept, figure 10a, because both the hot and cool structure

cases appear here. Although increasing temperature rapidly makes most materials uncompetitive, one class
of materials, RST and RSTC, retain much of room temperature strength and stiffness to 1500°F and con-

sequently they are almost as light in hot structure as in cool. One material/structural combination is lightest
for all temperatures, vehicle configurations, and structural arrangementsmAMMC/SSF.

Selected Concepts

Based on the parametric results, several concepts were selected for further comparison; their body
structural weight breakdowns are shown in figure 11. A wing weight fraction of 0.02 has been added to
the cylindrical configurations. All four basic concepts are compared with a common material and shell

geometry--AMMC/SSF. This comparison shows that the cool cylindrical concept has the lightest weight,

although if the volume penalty were removed from the cool pillow concept (for example if the volume

between the circular lobes and the elliptical shell is usable) it would be equally light.

Three composite materials--RSTC, AMMC, and GRAEPO---are compared in SSF construction

for the cool cylindrical concept. AMMC is lightest, followed by GRAEPO. Also on figure 11 is a
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comparisonof thesamematerial,RST,in bothSSFandSANDfor thesamevehicleconfigurationand
structuraltemperature.TheSSFstructurehasframesbut theSANDdoesnot andtheSAND hasavolume
penaltybut theSSFdoesnot; thenetresultis aboutequalweightfor both.

Thelongitudinaldistributions of shell weight per unit surface area for the concepts of figure 11 are

shown in figure 12. One of these concepts is buckling dominated (cool cylindrical RST/SSF), two are

pressure dominated (hot cylindrical AMMC/SSF), and the other five are heavily influenced by the mini-

mum gage constraint. One concept, cool cylindrical RSTC/SSF, is entirely minimum gage. These results

are consistent with the parametric trends discussed earlier. Figure 12 also shows that minimum gages are

highest for sandwich structure, relative to skin-stringer, and for composite materials, relative to isotropic.

The relatively low density of the AMMC material makes it light in minimum gage, even though it is a
composite.

CONCLUDING REMARKS

Part I of the hypersonic body weight study has identified several important characteristics and

trends. It was found that, generally, the wing-body designs had lower load-bearing body weights than did

the all-bodies; this is because the wing-body shape has efficient circular cross-sections, as opposed to
elliptical, and lower surface area for the same volume. It was also found that skin-stringer-frame con-

struction gives lighter weight than sandwich construction, especially for composite materials. This lighter
weight is due to the relatively low bending loads on the vehicles (which is due, in turn, to low gross

weight and density) and, in the case of composite materials, to high minimum gages. The exception is the
pillow tank arrangement, which tends to be lighter in sandwich. The use of metal matrix composites
makes hot structure competitive with cool.

The relative importance of design pressure and of minimum gage constraints is highly dependent

on vehicle/structural/material combination. For some combinations, the nominal design pressure of 15 psi
dominated the sizing of structural dements but for others it was insignificant. While minimum gage had at

least some degree of impact on all designs, some designs were completely minimum gage. These results

indicate that hypersonic aircraft structure should be designed with new considerations in mind. Proper

selection of structural concepts and materials and careful attention to detail design should largely eliminate
the effects of pressure, minimum gage, and thermal stress (the latter not considered in this study).

The body weight of hypersonic vehicles has a characteristic trend with respect to changes in gross

take-off weight. Body weight is high at low gross weights (due to minimum gage effects) and high at

high gross weights with a minimum body weight at some intermediate value of gross weight. The mini-

mum weight point, however, is very different for the various concepts. Minimum body weight for all-

body shapes occurs from 200,000 lb to 700,000 Ib gross weight, and for wing-body shapes, it can be
well over 1,000,000 lb. The implications are that the wing-body configuration becomes increasingly

superior, from a structural standpoint, as gross weight increases and that selection of the best structural

concept/material is highly dependent on gross take-off weight.

Varying the temperature of the structural material gave the result that the combination of advanced

metal matrix composite material in skin-stringer-frame construction (AMMC/SSF) gave the lightest weight

for all structural/vehicle concepts and all temperatures. Close competitors for the cool and hot cylindrical

concepts (wing-body shape) were graphite expoxy and advanced isotropic titanium alloy, respectively,
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bothin skin-stringer-frameconstruction.Fortheall-bodyshape(coolpillow and hot conformal con-
cepts), there were no close competitors to the AMMC/SSF combination.

The primary purposes of Part I of the hypersonic body weight study were to study weight trends

and to identify promising concepts for further study. In Part II, we will further investigate these concepts

by adding thermal protection system weight and by changing structural concept and material along the
vehicle length to better match local geometric, load, and temperature conditions. We will also further

investigate hot vs. cool structure and take up the question of integral vs. nonintegral tanks.
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APPENDIX A

VEHICLE GEOMETRIES

Considering the wing-body configuration first, the wing loading, gross density, fineness ratio, and
break-point ratio are defined as

I.t = WTO/Sp (A1)

PB = WTO/VB (A2)

Rfin = l[/D (A3)

RBR = 11]1 (A4)

where Sp is the wing planform area (see fig. A1). All symbols are defined in appendix D. The body
mouldline is defined by two power-law bodies of revolution placed back-to-back. Integration gives the

body volume, body planform area, and body surface area as

7rD2 (. /1. 12 )VB = 4 _2P1+ 1 + 2P2+ 1
(A5)

ll 12 .)SB = D P1 + 1 + P2+-----T (A6)

AB = /rSB (A7)

respectively, where

ll

2 2 "]1/3

2(2P1 + 1)WTORBRRfin. I

-j (A8)

/2 = ll/RBR-I1 (A9)

llD =
RBRRfin (A10)

Thus, if wing shape parameters A and It; body shape parameters P1, P2, RBR, and Rfin; and body size

parameters PB and WTO are all specified, the wing-body configuration is geometrically defined. The

section properties of cylindrical shells are well known and will not be repeated here.

For the all-body, the geometry is somewhat more complex because the lifting surface may not be
sized independently of the body. The wing loading, gross density, famess ratio, and breakpoint ratio are
defined as
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tx = WTO/Sp (All)

PB = WTONB (A12)

Rfat = S_Sp (A13)

RBR = ln]l (A14)

where Sp is the body plan area and Sn is the cross-sectional area at the breakpoint (Sn is also the maxi-
mum cross-sectional area if 0.5 < RBR < 1.0). With the aid of figure A2, the body plan area, breakpoint

cross-sectional area, volume, and body angle are computed to be

Sp = /2/tan A (A15)

Sn = nl_/tan A tan _ (A 16)

VB = rd_l(l + I_)/6 tan A tan 13 (A17)

= tan-I (_R2BR/Rfat) (AI8)

Inspection of equations (A11) through (A18) shows that the all-body geometry will be defined if the shape

parameters A, Rfat, and RBR ,and the size parameters PB and WTO are specified. Expressing the length
in terms of these parameters gives

l = [6RBRWTO tan A/(1 + RBR)RfatPB] 1/3 (A19)

so that the length of the all-body scales with (WTO/PB) 1/3 for constant shape, just as it does for the wing-

body. The wing loading of this configuration in terms of the configuration parameters is

TO(1 + RBR)2R2atp2tan A

)

IX = 36R2 R (A20)

This relation is plotted for A = 75 °, RBR = 0.67, and Rfat = 0.09 in figure A3. The ellipse ratio a/b of

the forebody is given by

afo = _R2R cot A/Rfat (A21)

The section properties of elliptical shells will be needed for the weight analysis. If the semimajor

and semiminor axes of the shell at a certain longitudinal station are a and b, respectively, then the cross-

sectional area and perimeter are given by

A = nab (A22)

P = 4aEr_ (A23)

The moment of inertia about the y axis divided by the shell thickness is found from
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= Iv = 4 l/az2 dsI'

Y is Jo

fa(_.22) q b2_,2= 4 1 - b2 1 + a2(a 2_y2) dy
0

= 4able ii - (2EII3- EI) - _EI-3-zeEIIt]
(A24)

where EI and EII are the complete elliptic integrals of the fast and second kind, respectively, and where

e = _l-(b/a) 2 (A25)

tis the eccentricity. The following approximate expressions for P and were found to give good agree-
ment with equations (A23) and (A24) for the values of e of interest: Y

P = 2xa_l - (e2/2) (A26)

I

I = (_4)ab213 + (b/a)] (A27)
y

For concepts employing pillow tankage, the structure is not in the shape of the vehicle configura-
tion but consists of intersecting cones fitted within the elliptical cross section of the all-body as shown in

figure A4. The number of circular sections or lobes is taken to be the nearest odd integer to

NT = 2(a/b) + 1 (A28)

This relation was determined empirically and gives minimum or near minimum weight for the configura-

tion variations considered in this study. Referring to figure A4, the equations defining the ith lobe in terms
of the i-lth are

e2r_ = e2b2-d_(1-e 2) (A29)

ri sin 0i = ri-1 sin 0 (A30)

di = di-1 + ri-1 cos 0 + ri cos 0i (A31)

where equation (A29) is the condition of tangency of the circle and the ellipse. These equations are solved
sequentially at each body station x beginning with the center lobe. The free parameter 0 is available for

weight and volume optimization as discussed in appendix B. The perimeter, cross-sectional area, and I'y
of the circular lobes at any section are given by
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NT-1
I ! t

Ps = gb - 2b0 + (2gri - 2ri0i - 2ri0) + 2_;rN T - 2rNT0

i=2

(A32)

[NT--1

A = 2 - _b2(20-sin20)+ i_2 _ri2- 12 ]1 r2(20i sin 20i) - _-r i(20 - sin 20)

2, 1 2 .... , 20N_)]
+ _rNT - _-rNTtZUN T - sin

(A33)

!

I
y

=4
b3--_(cos 0

m

!

NT-1

r i

+ T (cos 0 sin 0 + cos 0i sin 0i + _ - 0 - 0i)

m

3
I

' , ,+ cos 0N T sin 0NT + _ - 0NT) (A34)

where Nr = (NT + 1)/2. The perimeter of the vertical walls connecting the lobes is given by

!

NT-1

PW = 4 sin 0 Y_ ri (A35)
i=l

A typical pillow tankage installation is shown in figure A4. In view of equation (A28), the fore-

body will have a fLxed number of lobes while the number of lobes in the afterbody will increase toward the

rear of the vehicle. This increase results in an afterbody structure that is probably an impractical design for
an actual vehicle but is convenient for use in a mathematical model,
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APPENDIXB

WEIGHT ANALYSIS

In this appendix, weight estimating methods are developed for the load-carrying body structure. It

is convenient to discuss the all-body conformal and pillow-tank concepts separately. The wing-body

weight equations are obtained as a special case of the all-body conformal equations. Weight estimation
relationships for integral and nonintegral tanks, for the span-wise beam used with the all-body shape, and

for the nonoptimum weight are also presented. In addition, the volume taken up by the body structure is
determined.

Body Structural Weight for Conformal Concepts

Considering f'trst the elliptical shell, the stress resultants in the axial direction caused by longitudi-

nal bending, axial acceleration, and pressure at a station x are

Mb
NXB = "-r- (B1)

I
Y

NxWs (B2)NXA = p

Nxp = _ (B3)

respectively. In equation (B2), Ws is the poraonof vehicle weight ahead of station x if x is ahead the

inlet entrance, or the portion of vehicle weight behind x if x is behind the nozzle exit. In equation (B3),

Pg is the tank design pressure for integral tank concepts, whereas it is a nominal value of 2 psi for nonin-
tegral tank concepts. The total tension stress resultant is then

N + = NxB + Nxp
x

(B4)

if x is ahead of the nozzle exit, and

'4-

N x = NxB + Nxp+ NXA (B5)

if x is behind it. Similarly, the total compressive stress resultant is

°' fnotpros urosta ilize }xP, if stabilized
(B6)

if x is ahead of the inlet entrance, and

0, if not pressure stabilized tN x = NXB- Nxp, if stabilized
(B7)
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if x is behindit. Theserelationsarebasedon thepremise that longitudinal acceleration and pressure

always increase the magnitude of stress resultants; acceleration loads never decrease stress resultants, but

pressure loads may relieve stress, if pressure stabilization is chosen as an option. The pressure stabiliza-
tion option is available only for integral tankage. The stress resultant in the hoop direction is

Ny = bPgKp (B8)

where Kp accounts for the fact that not all of the shell material (for example, the core material in sand-
wich designs) is available for resisting hoop stress. Expressions for the geometrical quantities I'y, A, and

P may be found in appendix A.

The equivalent isotropic thicknesses of the shell are given by

tSc = Nx/FCy (B9)

tST = (1/Ftu)max( N+, Ny) (BIO)

tSG = Kmgtmg (Bll)

for designs limited by compression, tension, and minimum gage, respectively. In equation (B 11), tmg is

a specified minimum material thickness and KmgiS a parameter relating tSG to tmg which depends-on
the shell geometry. A fourth thickness that must'be considered is that for buckling lifiaited designs, tSB, as
given by equation (C13).

At each fuselage station x, the shell must satisfy all failure criteria and meet all geometric con-
straints. Thus, the shell thickness is selected according to

ts = max(tSc, tST. tsG. tSB) (BI2)

If iS = tSa, the structure is buckling critical and the equivalent isotropic thickness of the frames, tF, is

computed from equation (C13). If ts > ts_, the structure is not buckling critical at the optimum frame
sizing and the frames are re-sized to make tS = tSB. Specifically, a new frame spacing is computed from

equation (C2) as

d = -- (B13)
N-

x

and this value is used in equation (C11) to determine tl:.

Reference 5 shows that for pressures as low as 2 psig the pressure-induced bending loads at the

ends of the semi-major axes of the elliptical shell result in prohibitively high weight, even for concepts that

take these loads in ring-frames. Consequently, it is assumed that these loads are taken by internal vertical

tension ties, for both integral and nonintegral tankage. At a fuselage station x, the equivalent isotropic
thickness of the "smeared" tension ties is given by
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AP
iT = _ (B14)

lt'tU

The total thickness of the body structure is then

tB = ts + tF + tT

The shell gage thickness, if desired, may be computed from tg : [s/Kmg.
weight is obtained by summation over the vehicle length

(P[si + pFtFi + PF[Ti) ai "_ 1 - (ei2/2) Axi (B16)wi 2g Z

where quantifies subscripted i depend on x. The procedure just described simplifies to the special case
of circular cross-section vehicles in an obvious way; tension ties are not needed with circular
cross-sections.

We next discuss the derivation of the structural geometry parameters shown in table B 1. The

Z-stiffened shell will be used as an example of skin-swinger-frame construction. Using reference 9 and

figure B 1, the equivalent isou'opic thickness of the smeared skin and swingers is

is = ts+"b-_s _- 1 + 1.6 ts (BI7)
ts)J

Since only the skin is available for resisting pressure loads,

Kp = 1+ 1.6(_s) t(_-s) (B18)

For minimum gage designs, if ts > tw t hen tw = tmg and

is = [ t(_w)+ 1.6 (_'_)ltmg (B19)

so that

Kmg =

On the other hand, if ts < tw then ts = tmg and

is = [1

so that

(B15)

The "ideal" body structural

t(Fw) + 1.6 b(_s) (B20)

+ 1.6 (_s) (_)]tmg (B21)

('bw'_ (tw_
Kmg = 1 + 1.6t-b_-s)t_--s) (B22)
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Equations (B 18), (B20), and (B22) show that for both pressure loading critical and minimum gage limited
structure, (bwfos) and (tw/ts) should be as small as possible (i.e. no stringers).

In practice, a typical design will be influenced by bending and pressure loads and by the minimum

gage constraint, and thus a compromise is necessary. If buckling is of paramount importance, then a good
choice is (bw/bs) = 0.87 and (tw/ts) = 1.06 because this gives the maximum buckling efficiency for this
concept, e =.911 (ref. 9). From equations (B18) and (B22),

Kp = King = 1 + (1.6)(0.87)(1.06) = 2.475

This is concept 2 in tables 4 and B 1. If pressure is a dominate loading condition, then (bw/bs) = 0.6 and

(tw/ts) = 0.6 is a reasonable choice, giving _ =.76, Kp = 1.576, and Kmg = 2.638; this is concept 3. For

minimum gage dominated structure, the geometry (bw/bss) = 0.58 and (tw/ts) = 0.90 gives concept 4.

The geometry of the truss-core sandwich shell concept is shown in figure B2. The equivalent
isotropic shell thickness of this concept is

1)tf cos V f (B23)

Reference 9 shows that optimum buckling efficiency is obtained for (tc/tf) = 0.65 and V =55 °. This gives

e = 0.4423, Kmg = 4.820, and Kp = 3.132, concept 6 in tables 4 and B1. To get a design that is lighter
for pressure and minimum gage dominant structure, we choose a geometry that puts more material in the

face sheets and less in the core; the choice (tcJtf) = 1.0 and V = 45 ° gives structural concept 7. These

calculations assume that the face sheets and core are the same material and are subject to the same
minimum gage constraint.

The preceding analysis may be used to estimate the relative weights of elliptic and circular shells in
bending. Consider an elliptical and a circular shell each of equal length and equal enclosed cross-sectional

area. Let the structure of both shells be a frame-stabilized, integrally stiffened shell of the same material

which is buckling critical, and suppose each shell to be loaded by the same bending moment (no pressure
loading). Then, for the elliptical shell, equations (B16) and (C13) give

WIellipse = npa 1- _ A x

×

Setting r = a = b in this expression gives

÷06 81a  ]

W_ircle
(2/rpr Ax) (.LK-----_Ie3 J

_(2r 2) 1/4

Using equation (B1) and setting r = _ the weight ratio is then
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0324)

Thisratio, which is afunctiononly of a/b, is plotted in figure B3. It is seen to be nearly linear--the ellip-

tical shell being about twice as heavy as the circular one at a/b = 4. If the shells are constructed of truss-
core sandwich, equations (B16), (B1), and (C1) result in the ratio

Wlellips¢ e 2 4 _3/5
Wlcircle = ('_ "_ 1 - "_'{[3 + (b/a)l(a/b)3/2J

0325)

This ratio is also plotted in figure B3 and also varies linearly with a/b but with a steeper slope. Since all-

body configurations typically have a/b = 4, conformal structure elliptical cross-section concepts will be

considerably heavier than circular cross-section concepts.

Body Structural Weight for Pillow Concepts

Because of the poor structural efficiency of elliptical shells, a special concept called pillow tankage

is potentially attractive for all-body configurations. This concept consists of a shell composed of inter-

secting cones fitted within the elliptical body, as discussed in appendix A. The stress resultants in the cir-

cular lobes are computed according to formulas (B 1) through (B8), except that equations 032) and (B3)

are replaced by

nxWs 0326)
NXA = (Ps + Pw)

APg
Nxp = (Ps + Pw) 0327)

The various equivalent isotropic thicknesses of the shell are computed from equations (B9) through (B 11)

as before, and the shell thickness is selected from equation 0312). Any structural shell geometry listed in

tables 4 and B 1 can be used in pillow tankage; the buckling relations for these concepts may be determined
from appendix C. Frame weights are computed from either equation 0313) or equation (C13), depending

on whether or not the design is buckling critical.

The maximum stress resultants on the vertical walls connecting the pillow tank lobes are

AP
Nwx = (Ps + _w) 0328)

Nwz = Pg(b cos 0 + r2 cos 02) 0329)

The equivalent isotropic thicknesses of the wall are given by

twT = F+u max(Nwx , Nwz) 0330)

twG = Kmgtmg 0331)
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for designs limited by tension and minimum gage, and the wall thickness is therefore

tw = max(fwr, twG) (B32)

The ideal structural weight of pillow tankage vehicles is then obtained by summation over the body length

WI = Z[PPsitsi + pF(Ps i + Pwi){Fi + PFPwi{wi]Axi (B33)

where quantities subscripted i depend on x.

The parameter 0 (fig. A4) is available for vehicle performance optimization. The function WI(0)

monotonically decreases within the range 0.< 0 < x/2, and 0 therefore should be as large as possible to

minimize WI. (Although it is possible for equation (A28) to restrict the range of 0, this limitation is not
generally encountered.) However, as 0 approaches x/2 the tank volume decreases (recall that the num-

ber of lobes, NT, is fixed by equation (A28)) and thus the volumetric efficiency ri, defined as the ratio of

tank volume to body configuration volume, must be considered as well as WI. For practical designs,
ri(0) is a concave downward function having a local maximum for some value of 0 on 0 < 0 < x/2.

The payload performance of a hypersonic vehicle, _, will be a function of both W! and 11, that is,
= (WI, ri); hence the rate of change of payload with respect to 0 is

d* ( 2" "_dWI (2"_ dTI

0-'a": '+ C -J00 (B34)

The necessary condition for maximum _ gives to a first-order approximation

(Wlopt - WIo) + (riopt - rio) = 0 (B35)

where _/_WI and _/'Orl are the sensitivities of payload to W I at constant ri and to 11 at constant

WI, respectively, and where WIo and rlo are nominal values. Values of the partial derivatives are deter-

mined from a sensitivity study performed with a mission analysis program. Equation (B35) is solved for

the optimum values WIotx and riopt using Newton's method with O as the independent parameter. For
typical vehicle shapes an'd missions, this procedure gives values of 0 from 50 ° to 60 °.

Nonoptimum Body Structure Weight

Since the above analysis gives only the ideal weight, Wi, the "nonoptimum" weight (fasteners,

cutouts, surface attachments, uniform gage penalties, manufacturing constraints, etc.) has yet to be deter-

mined. The method used here is explained with the aid of figure B4 which is a log-log plot of body

weight as a function of a weight estimation parameter, X, which accounts for the effects of gross weight,

body dimensions and design load factor. The circles on the figure indicate actual body weights of existing
aircraft. The lower line represents the equation developed in reference 10 to estimate body weight of

wing-body hypersonic aircraft, and reflects improvements over time in design techniques and analysis
methods.

The analysis developed in the present study was applied to the same existing aircraft and the

resulting ideal weights are shown by the triangles. A two parameter regression analysis based on ideal
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weight,WI, andbodysurfacearea,AB, was then employed to obtain the best fit with the advanced tech-

nology hypersonic aircraft line. The resulting body weights are shown by the squares, and the total
weight of the body structure is 1.637WI + 0.076AB so that the weight of the nonoptimum material is

WNO = 0.637Wi + 0.076AB 0336)

The correlation with existing aircraft is quite good (fig. B4) except for the aircraft at the extreme values of

the weight parameter. This conclusion follows from the fact that the scatter of the square symbols about

the lower curve is in the same pattern as the scatter of the circles (actual weights) about the upper curve.

Tank and Spanwise Beam Weights

To a fast approximation, the weight of a pressurized fuel tank will be proportional to tank material

density, tank pressure, and tank volume, and inversly proportional to tank material tensile strength. Thus,
the weight of nonintegral tanks is given by:

WTK = 14460 pTKPgVTK 0337)
FtUTK

The proportionality constant has been determined from the weight of the tank described in reference 11.

For this tank, 9TK = 0.298, FtUTK = 172,000, VTK = 71,500, Pg = 15.3, and WTK = 27,400.

For integral tank concepts, the tank weight consists only of bulkheads and other items specifically
necessary for containment of fuel within the body structure. Again using the tank of reference 11, as a
reference point, for integral tanks

WTK = 2406 PP_VTK
Ftu 0338)

Because these formulas are based on an actual tank design, nonoptimum factors are not applied to tank
weight.

Comparison of equations 0337) and 0338) shows that for the same materials and operating
temperature and pressure, the nonintegral tank weight will be approximately six times the integral tank

weight. This advantage for integral tankage is greatly reduced or eliminated, however, because in integral
tankage concepts the tank pressure loads must be carried in the body structure, typically an inefficient

pressure vessel, and also because the tank components typically must operate at higher temperatures.

The transverse bending moments associated with the large span at the rear of the all-body configu-

ration require additional structure for this configuration. The weight of such structure is estimated by

computing the weight of a spanwise beam capable of transmitting the horizontal tail loads into the body
structure. The result is

WSB = 9.822pLTa2/dTFcy 0339)

where LT is the vertical tail normal force at the design load factor, dT is the beam depth (taken to be the

body depth at the location of the tail), and aM is the beam span (taken to be the body span at the location
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of thetail). Thesamenonoptimumfactorthat is applied to the body structure, 1.637, is included in equa-

tion (B39).

Structural Volume

The mission performance of hypersonic aircraft is sensitive to volume as well as to weight. Con-

sequently, the volume taken up by the structure must be estimated and factored into mission performance

calculations and design concept decisions. For the concepts considered here, there are two sources of lost

volume due to the structure. The first is the volume between the lobes of the integral tank structure and the

vehicle mouldline in the pillow tank concept (see fig. A4). At a station x, the difference between the area

enclosed by the mouldline and the area enclosed by the pillow tankage is

AA = ltab- A (B40)

where A is given by equation (A33). The volume decrement (lost volume) is then given by

VAp = ZAAi Axi.

The second source of lost volume is the space between the face sheets of sandwich shells. From

figure B2,

h = -_tan_g (B41)

and from reference 9,

bf = 0.95tf KxtE (B42)

provided N x > 0. Substituting tf = {/Kp and equation (B42) into equation (B41) gives

(B43)

where

Kth - 0.95 K'f-K_xtan _g
2Kp (B44)

For concept 6 in table B1, Kx = 3.5, _ -- 55 °, and Kp = 3.132; this gives Kth = 0.405 as shown in
table B1. At a station x, the cross-sectional area enclosed by the structure is AA = Ph where P is the

perimeter of the structural shell, given by equation (A23) or equation (A26). The volume decrement is

then VAs = gAtq Axi as before.

After the pillow tank volume decrement (if any) and the slructural shell volume decrement (if any)

have been added to get the total volume lost because of the structure, VA = VAp + VA s, the volumetric
efficiency is determined from r I = 1-VA/VB. The weight penalty from lost volume is then
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c3_/o_q (11 - 1) (B45)
Wa = _/aWl

This "weight" should be included when comparing different structural concepts, in order to properly

reflect the impact on mission performance. The partial derivatives in equation (B45) are the same as those

in equation (B34) and are highly mission dependent.
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APPENDIX C

BUCKLING EQUATIONS

In this appendix expressions are derived for the equivalent isotropic thickness of the shell required
to preclude buckling, tSB, and for the "smeared" equivalent isotropic thickness of the ring frames required

to preclude general instability, tF. The expressions are derived for the elliptical shell of the all-body con-

figuration; these expressions are then used to obtain the equations for cylindrical shells as a special case.
The major assumptions are that the structural shell behaves as an Euler beam and that all structural materi-
als behave elastically.

For the frame-less sandwich shell concept, it is assumed that the elliptical shell buckles at the load

determined by the maximum compressive stress resultant N_, on the ellipse. Reference 12 indicates that a
good approximation is obtained by assuming the structure to'be a circular cylinder with the same radius of
curvature as that of the ellipse at the point of application of N-. Since the maximum load occurs at the

ends of the minor axis where the radius of curvature is a2/b, trhe buckling equation is

(a2/b) E = e L(a2/b)j

or, solving for tSB

V Yx ]I/m

= (a2/b)L(a2%S j (C1)

This equation is based on small deflection theory, which seems reasonable for sandwich cylindrical shells,

although it is known to be inaccurate for monocoque cylinders. Values of m and e may be found, for

example, in references 9 and 13-15 for many shell geometries. Table B1 gives values for structural con-

cepts number 6 and 7 used in the present study, both of which are truss-core sandwich (see table 4). The

quantities N', a, b, r, and consequently tSB, will vary with body station dimension x. For the wing-.X
body, equation (C1) becomes

lNx] l/m

iSB = rt_ ) (CI')

For the stiffened shell with frames concept, the common procedure of assuming the shell to be a
wide column is adopted. The buckling equation is then (ref. 13)

x

_"=e

or, solving for tSB
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N'd

tSB = (C2)

which is applicable for both the all-body and the wing-body. Values of e for structural concepts 1

through 5 are given in table B1; The structural shells are simply stiffened, Z-stiffened, and truss-core
sandwich. We next size the frames to prevent general instability failure.

In order to generalize the Shanley criterion (ref. 16) for frame sizing to elliptical shells, the stiff-

ness of elliptical rings to inplane loads must be determined. If the methods and nomenclature of reference
17 are used, the redundant bending moment at the ends of the semimajor axis of an elliptical ring due to

oppposing inplane point loads of magnitude L acting perpendicular to the ring at the ends of the semi-
minor axis is

fs M' ds L

Ma = iSds _.-a

0

q a - a2y 2 + b2]¢ 2 La2(a 2 _ y2) dy -

(C3)

where the dimensional quantities are defined in figure 24 and

Em = 1 + lo_e[(a/b)(1 + e)] (C4)
(a/b)2e

The bending-moment distribution in the ring, therefore, is given by

LaM = "_'_,E'ff'a- 2 (C5)

To determine the deflection of the ring at the point of application of the load, the method of virtual work is
used:

f s M(OM/OL) ds8 = 2 EFIF

2L fa aE/_E'_H _q b2_'2= _ - I + a2(a 2_y2) dy
0

I6- + 6e 2 - (C6)
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Since L = KS/S,thespringconstantof thering is

K3EFIFI_- 1 )
KS = (C7)

the factor (K3/8)[(x/8) - (l/x)] being added to conform to reference 16.

It is of interest to compare the stiffness of an elliptical ring to that of a circular ring. For equal val-
ues of EFI F and equal enclosed areas (r = -_ ), the ratio of spring constants is

(K_)¢llivse =
(KS)circle

2EII- El EI - EI! E2m

3 + 3e 2 -

(C8)

This ratio is plotted as a function of a/b in figure C1, and the relatively low spring constant of the ellipti-

cal ring at the values of a/b of interest indicates that the weight of the rings in elliptical shells will be

greater than those of circular shells for the same conditions.

The equation for frame (ring) weight is next established. Generalizing the results of reference 16

to elliptical frames gives the following expression for the spring constant required of the frames

K1K2aEIIN-
X

KS = d (C9)

If the frames are "smeared" according to A F - iFd, then combination of equations (C7) and C9) gives

iF = 4CFNxa4EII/2EII3- EI+ EI 3e2EII _ 4-_)
(CIO)

where KF1 (= IF/A 2) is the frame stiffness, and where the constants K1, K2, K3 have been absorbed by

"Shanley's constant,-" CF, taken to be 0.625x10 --4. Calculations show that the expression

iF = _/xCFNx/KFld3EF _/3 + (b/a) (0.3719ab + 0.6281a 2) (C11)

very closely approximates equation (CIO) for the range of a/b of interest and equation (C11) is used in
the weight analysis.
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Sincetheframespacing,d, is asyetunspecified,it maybechosento minimizetheshellplusframe
weight. If thestructureis bucklingcritical, thetotalsmearedweightperunit surfaceareaof theshelland
framesis givenby

(W/S) = ptSB + pFtF (C12)

where tSB and ttF are given by equations (C2) and (C11). When (W/S) is minimized with respect to d,

tSB

tF =

= L KFl133EF E3 ] ' P
(0.3719ab + 0.6281a2)] TM

J k27p3F (0.3719ab + 0.6281a 2)

(C13)

where the optimum frame spacing is given by

]n:CFeE 4 3+'_-(0.3719a b + 0.6281a2 >d= 3 (C14)

The shell weight per unit surface area is three times the frame weight per unit surface area for least weight

design. The total weight per unit surface area is

= _ hCF 3 + [(W/S) 271/_L KFle3EFE 3 j pFO3Nx 2 (0.3719ab + 0.6281a2)] TM (C15)

Reduction of equations (C13)-(C15) to the case of a circular section gives the equations for the

wing-body

r -2 .'11/4
r _CF 11/8

iSB = LKFIE3EFE3j [6pF--_x rz-J

[" nCF ]l/8 r2p3N-xxZr2] 1/4

tF = LKFle3EFE3"] L J

(C13')

: (C14')
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is b.

( 2 "_1/4r _CF ]1/8 r 2 _11/4

(w/s) -- 4(r/.) /KF,_aEFE3j ,-,-j <c,,.,

For the pillow tank geometry, figure A4, the maximum load occurs where the radius of curvature
Therefore, for sandwich shell,

IN x ]l/m

_s. = b[b-_)
For the frame stiffened shell concepts, the bucking equations are

=[ CFbI_ ]l/sr 2"11/4

[ CFbIy ]1/8 [2p3N-xx21 TM

1/2

d = (6 pP-pE'4bI_-_4gCFeE__)

cFb,;1"8111,,
(W/S) = 4 _2"_') LKFle3EfE3J

is given by equation (A34).where I'
Y

(CI")

(C13")

(C14")

(C15")
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APPENDIXD

SYMBOLS

A

Aa

AF

a

aM

b

bs

bM

bw

CF

D

d

di

dT

E

EF

EI

Eli

EIII

e

Fcy

Ftu

cross sectional area

body surface area

frame cross-sectional area

semimajor axis

maximum semimajor axis

semiminor axis

stiffener _spacing, figure B 1

maximum semiminor axis

stiffener depth, figure B 1

Shanley's constant

maximum diameter of wing-body

frame spacing

defined on figure A4

body depth at vertical tail

Young's modulus of shell material

Young's modulus of frame material

complete elliptic integral of first kind

complete elliptic integral of second kind

defined b y equation (C4)

eccentricity, defined by equation (A25)

compressive yield strength

tensile ultimate strength
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h

IF

Iy

I'
y

KF1

Kmg

Kp

KS

Kth

LT

1

ll

12

M

m

Nx A

NXB

Nxp

NT

Nw x

Nwz

N +
x

N-
X

Ny

thickness of sandwich shell, figure B2

frame cross-section moment of inertia

moment of inertia about y axis

Iy/ts

frame stiffness coefficient, IF/A 2

shell minimum gage factor;, see equation 0311)

shell geometry factor for hoop stress

flame spring constant

sandwich thickness parameter

maximum vertical tail lift

body length

forebody length

afterbody length

distance to breakpoint; see figure A2

longitudinal bending moment

buckling equation exponent

defined by equation (B2)

defined by equation (B 1)

defined by equation (B3)

defined by equation (A28)

axial stress resultant in wall

vertical stress resultant in wall

tensile axial stress resultant

compressive axial stress resultant

hoop direction stress resultant
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nx

P

Pg

Ps

Pw

P1

P2

RBR

R fat

Rfin

r

ri

Sp

Src

T

tc

tf

ts

tg

tw

tmg

_B

_F

longitudinal acceleration

perimeter

internal gage pressure

perimeter of shell

perimeter of walls

exponent of power law of forebody of wing-body; see figure A1

exponent of power law of afterbody of wing-body; see figure A 1

breakpoint ratio, defined by equations (A4) and (A14)

fatness ratio, defined by equation (A13)

fineness ratio, defined by equation (A3)

radius of wing-body

defined in figure A4

plan area of lifting surface

breakpoint cross-sectional area of all-body

structural temperature

core thickness, figure B2

face sheet thickness, figure B2

skin thickness, figure B 1

material gage thickness, tS/Kmg

stiffener thickness, figure B 1

material minimum gage thickness

total equivalent isotropic thickness of shell and frames

total equivalent isotropic thickness of body structure

smeared equivalent isotropic thickness of frames
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_s

_SB

_Sc

{SG

tST

_T

tw

tw G

_WT

VB

VTK

Va

(W/S)

W

wi

WNO

WS

WSB

WTK

WTO

Wa

X

Y

Z

equivalent isotropic thickness of shell

shell thickness required to preclude buckling failure

shell thickness required to preclude compressive failure

shell thickness required to meet minimum gage constraint

shell thickness required to preclude tensile failure

smeared tension tie thickness

smeared wall thickness

thickness of wall to meet minimum gage constraint

thickness of wall required to prevent tensile failure

body volume

tank volume

volume lost due to structure

shell structural weight per unit surface area

body structural weight; see table 3

ideal body weight; see equations (B16) and (B33)

weight of nonoptimum material

vehicle longitudinal weight distribution

weight of spanwise beam

weight of tank

gross takeoff weight

weight penalty associated with volume lost due to structure

longitudinal body coordinate

transverse body coordinate

vertical body coordinate

body angle of all-body
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8

£

q

0

Oi

A

P

pB

PF

Z

frame deflection

shell buckling efficiency

volumetric efficiency of body structure

intersection angle for pillow tanks

defined in figure A4

sweep

shell structural material density

gross body density

frame structural material density

payload performance

wing loading

sum over body length

truss core angle, figure B2

defined in figure B4

31



REFERENCES

o

.

.

.

.

o

.

.

9.

10.

11.

12.

13.

14.

Gregory, T. J.;Petersen,R. H.; and Wyss, J.A.: Performance Tradeoffsand Research Problems

for Hypersonic Transports. J.Aircraft,vol.2, no. 4, July-Aug. 1965, pp. 266-271.

Petersen, R. H.; Gregory, T. J.; and Smith, C. L.: Some Comparisons of Turboramjet-Powered

Hypersonic Aircraft for Cruise and Boost Missions. J. Aircraft, vol, 3, no. 5, Sept.-Oct. 1966,

pp. 298-405.

Gregory, T. J., Ardema, M. D.; and Waters, M. H.: Hypersonic Transport Preliminary Perfor-
mance Estimates for an All-Body Configuration. AIAA Paper 70-1224, 1970.

Bowles, J. V.: Ames Conceptual Studies Activities. Proceedings of the Second National Aerospace

Plane Symposium, Applied Physics Laboratory, Laurel, Maryland, Nov. 1986.

Ardema, M. D.: Structural Weight Analysis of Hypersonic Aircraft. NASA TN D-6692, Mar.
1972.

Ardema, M. D.: Hypersonic Structural Concepts and Weight Trends. Proceedings of the Second
National Aerospace Plane Symposium, Applied Physics Laboratory, Laurel, Maryland, Nov.
1986.

Ardema, M.; Kidwell, G.; and Bowles, J.: Update of NASA Ames Conceptual Design Activity.

Proceedings of the Third National Aerospace Plane Symposium, Moffett Field, California, June
1987.

Ardema, M. D.: Analysis of Bending Loads of Hypersonic Aircraft. NASA TM X-2092, 1970.

Crawford, R. F.; and Bums, A. B.: Strength, Efficiency, and Design Data for Beryllium Struc-
tures. ASD-TR-61-692, Feb. 1962.

Anon.: Weight and Size Analyses of Advanced Cruise and Launch Vehicles. Final Report, NASA
Contract NAS2-3025, Mar. 1966.

Heathman, J. H. et al.: Hydrogen Tankage Application to Manned Aerospace Systems.
AFFDL-TR-68-75, 1968.

Hutchinson, J. W.: Buckling and Initial Postbuckling Behavior of Oval Cylindrical Shells Under
Axial Compression. ASME Paper 67-APM-W, Dec. 1966.

Crawford, R. F.; and Bums, A. B.: Minimum Weight Potentials for Stiffened Plates and Shells.

AIAA J., vol. 1, no. 4, Apr. 1963, pp. 879-886.

Vinson, J. R.; and Shore, S.: Minimum Weight Web Core Sandwich Panels Subjected to Uniaxial

Compression. J. Aircraft, vol. 8, no. 11, Nov. 1971, pp. 843-847.

32



15. Vinson,J.R.: OptimumDesignof CompositeHex-CellandSquareCell Honeycomb Sandwich
Panels Subjected to Uniaxial Compression. AIAA J., vol 24, no. 10, Oct. 1987,
pp. 1690-1696.

16. Shanley, F. R.: Weight-Strength Analysis of Aircraft Structures. Second Edition, Dover, New
York, 1960.

17. Timoshenko, S. P.; and Young, D. H.: Theory of Structures, McGraw-Hill, 1945.

33



TABLE 1.- BASELINE ALL-BODY CHARACTERISTICS

INPUT

• GROSS TAKE-OFF WEIGHT 200,000 Ib

• GROSS DENSITY 12 Ib/ft 3

• FATNESS RATIO 0.108

• BREAKPOINT RATIO 0.70

• BODY SWEEP 78.5 °

• PROPULSION WEIGHT 30,000 Ib

COMPUTED

• LENGTH 123 ft

• MAXIMUM HEIGHT 12.1 ft

• MAXIMUM WIDTH 50.2 ft

• BODY VOLUME 16,667 ft 3

• BODY PLANFORM AREA 3,093 ft2

• BODY SURFACE AREA 6,987 ft 2
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TABLE 2.- BASELINE WING-BODY CHARACTERISTICS

INPUT

• GROSS TAKE-OFF WEIGHT 200,000 Ib

• GROSS DENSITY 12 Ib/ft 3

• FINENESS RATIO 10

• BREAKPOINT RATIO 0.75

• WING LOADING 90 Ib/ft 2

• WING LEADING EDGE SWEEP 78.5 °

• PROPULSION WEIGHT 30,000 Ib

• WING WEIGHT 4,000 Ib

COMPUTED

• LENGTH

• MAXIMUM DIAMETER

• BODY VOLUME

• WING PLANFORM AREA

• BODY SURFACE AREA

179 ft

17.9 ft

16,667 ft 3

2,222 ft2

5, 5

TABLE 3.- BODY WEIGHT ITEMS

• SHELL

• WALLS

• FRAMES

• TENSION TIES

• SPANWISE BEAM

• NON_)PTIMUM

• TANK

• VOLUME PENALTY
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TABLE 4.- STRUCTURAL GEOMETRY CONCEPTS

1. SIMPLY STIFFENED SHELL, FRAMES, SIZED FOR MINIMUM WEIGHT IN BUCKLING

2. Z-STIFFENED SHELL, FRAMES, BEST BUCKLING

3. Z-STIFFENED SHELL, FRAMES, BUCKLING-MINIMUM GAGE COMPROMISE

4. Z-STIFFENED SHELL, FRAMES, BUCKLING-PRESSURE COMPROMISE

5. TRUSS-CORE SANDWICH, FRAMES, BEST BUCKLING

6. TRUSS-CORE SANDWICH, NO FRAMES, BEST BUCKLING

7. TRUSS-CORE SANDWICH, NO FRAMES, BUCKLING-MINIMUM GAGE-PRESSURE COMPROMISE

TABLE 5.- STRUCTURAL MATERIALS

2014T6

6AL4V

RENE' 41

RST

RSTC

AMMC

GRAEPO

STATE-OF-THE-ART ALUMINUM ALLOY

STATE-OF-THE-ART TITANIUM ALLOY

STATE-OF-THE-ART NICKEL ALLOY

ADVANCED TITANIUM ALLOY

ADVANCED TITANIUM MATRIX COMPOSITE

VERY ADVANCED METAL MATRIX COMPOSITE

GRAPHITE-EPOXY COMPOSITE

TABLE 6.- BODY STRUCTURAL WEIGHT FRACTION, W/WTo , FOR COOL CYLINDRICAL
CONCEPT

STRUCTURAL

CONCEPT

MATERIAL

1

2

3

, 4

5

6

7

2014T6 6AL4V RENE41 RST RSTC

0.05.0.06140.0.7 0.04660.0495

0.0565 0.0559 _ _ 0.0491

o.o_1,oo_, oo,,, oo_,o_oo_,_
_ioo_ o.o_,, oo,_, 006,,
o.o_ oo,_ o,o_, oo_,_o.o,o,
0.0699 0.0610 0.1079 0.0566 0.0991

0.0728 _..05_ _') 0.0.7 0.0428 0.0693

AMMC GRAEPO

0.0322 0.0354

0.0323 0.0340

0.0308 0.0356

O.OIk_4 0.0612

0.0661 0.0660

0.0562 0.0465
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TABLE 7.- BODY STRUCTURAL WEIGHT FRACTION, W/WTo, FOR HOT CYLINDRICAL
CONCEPT

STRUCTURAL

CONCEPT '

MATERIAL RENE41

1

2

3

4

5

6

7

0.1135

0.1074

0.1045

0.1539

0.1295

0.1285

RST

0.0502

0.0469

0.0478

0.0670

0.0596

0.0537

RSTC AMMC

0.0519 0.0554

0.0512 0.0555

0.0449

0.0539

0.0911 0.1000

0.0996 0,0823

0.0704 0.0817

TABLE 8.- BODY STRUCTURAL WEIGHT FRACTION, W/WTo, FOR COOL PILLOW CONCEPT

STRUCTURAL I

CONCEPT

MATERIAL

1

2

3

4

5

6

7

2014T6 6AL4V RENE 41

0.1162 0.1539

0.1228 0.1409

0.1282 0.1476

0.1284 0.1480

0.1422 0.1652

0.0912 0.1030

0.2050

0.1884

0.1959

0.1979

0.2221

0,1674

RST

0.1210

0.1114

0.1159

0.1168

0.1325

0.0962

RSTC

0.1103

0.1045

0.1085

0.1454

0.1508

0.1154

AMMC

0.0651

0.0636

0.0656

0.0998

0.1053

0.0804

GRAEPO

0.0911

0.0853

0.0871

0.0889

0.1109

0.1067

TABLE 9.- BODY STRUCTURAL WEIGHT FRACTION, W/WT O, FOR HOT CONFORMAL
CONCEPT

STRUCTURAL

CONCEPT

MATERIAL

1

2

3

4

5

6

, 7

RENE 41

0.1945

0.1859

0.1869

0.2092

0.2256

0.2424

RST

0.0891

0.0852

0.0858

0.0993

0.1058

0.1122

RSTC

0.0793

0.0760

0.0798

0.1246

0.1361

0.1027

AMMC

0.0656

0.0643

0.0621

0.1002

0.0966

0.0883
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TABLE B 1.- STRUCTURAL GEOMETRY PARAMETERS

STRUCTURAL
CONCEPT m

2

2

2

2

2

1.667

1.667

0.656

0.911

0.760

0.760

0.605

0.4423

0.3615

Kmg

2.463

2.475

2.039

2.628

4.310

4.820

3.413

Kp

2.463

2.475

1.835

1.576

3.965

3.132

3.413

Kth

0.0

0.0

0.0

0.0

0.459

0.405

0.320

Figure 1.- The all-body configuration.
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Figure 2.- The wing-body configuration.
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Figure 3.- All-body structural arrangements.
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STRINGER-FRAME (SSF)

TRUSS-CORE
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Figure 4.- Shell structural geometries.
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